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DISPERSION-COMPENSATED CALIBRATION FOR GEL PERMEATION CHROMATOG- 
RAPHY: THEORY AND UTILIZATION FOR DIRECT AND UNIVERSAL CALIBRATION 

G. J. F. Ring, R. A. Stratton, and L. R. Schroeder 
The Institute of Paper Chemistry 

Appleton, Wisconsin 54912 

ABSTRACT 

This paper describes the error involved in the utilization of 
nonmonodisperse polymer standards for the calibration of GPC 
columns. It also demonstrates that the computer technique devel- 
oped by McCrackin (1) produces a calibration equation from poly- 
disperse standards that avoids this error. This equation, 
referred to as dispersion-compensated, can successfully be incor- 
porated into the theory of universal calibration to remove the 
necessity of assuming infinite instrumental resolution. Further- 
more, it is shown that only the calibration equation compensated 
for number-average molecular weights is a true universal form. 

INTRODUCTION 
The conventional method of calibrating a gel permeation chro- 

matography (GPC) instrument by plotting the weight-average molecu- 

lar weights of a series of polymer standards against the modal or 

maximum peak-height positions of their respective chromatograms 

results in a calibration equation that does not correctly recalcu- 

late the weight-average molecular weights of the original chromat- 

ograms used in the calibration. This is a consequence of two 

sources of error: instrumental spreading which produces an appar- 

ent increase in the polydispersities of the true molecular-weight 
distributions, and the misassignment of a weight-average molecular 

weight to the modal position of a chromatogram which should 

correspond to an intermediate value between the weight-average and 

the number-average molecular weights. 

Copyright 0 1983 by Marcel Dekker, Inc, 
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40 2 RING,  STRATTON, AND SCHROEDEK 

To circumvent this problem, McCrackin (1) has recently devel- 

oped a computerized calibration technique capable of calculating a 
calibration equation that is a function of the true modal positions 

of gaussian monodisperse polymer chromatograms and the appropriate 
dispersion correction term, specific to the polymer/solvent mix- 

ture. This is accomplished by determining the most probable posi- 

tion for a weight-average or a number-average molecular weight for 

a polydisperse sample on its respective chromatogram and perform- 

ing a regression analysis with similar values in a series of digi- 

talized, input-data chromatograms of various molecular weights. 

The equation determined by this technique is dispersion-compens- 

ated, because it can be used directly to analyze a chromatogram 

that has not been corrected for instrumental spreading, to obtain 

an accurate molecular-weight average of the type used in the 

Cali brat ion. 

The purpose of this study is to demonstrate the superiority of 

McCrackin's technique over the common graphical technique, which 

utilizes an independently obtained dispersion correction, by docu- 

menting the nature of the positional errors inherent in the 

graphical technique. It is also the purpose of this study to pre- 

sent a valid, dispersionally correct universal calibration derived 

from the dispersion-compensated equations. The theory of univer- 

sal calibration based on infinite resolution is invalid because it 

neglects instrumental spreading and is subject t o  the propagation 

of serious positional errors. 

THEORETICAL DEVELOPMENT 
___I_____ 

Direct Calibration 

The utilization of GPC to determine the molecular weight 

averages of polymer samples requires calibrating an instrument for 

the expected column-residency time, each molecular-weight and 

determining the instrumental spreading coefficient (2) .  Residency 

time is customarily measured in elution volume units by virtue of 
a constant elution flow rate. The relationship between molecular 

weight and elution volume is usually approximated by a linear, 

semi logari thmic function: 
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DISPERSION-COMPENSATED CALIBRATION 403 

,” 
In M(x) = In M(x) = Dl(x) - D2(x) v, (1) 

where M(x) is the molecular weight of a monodisperse polymer of 

type ”x,” v is the elution volume, and the coefficients Dl(x) and 

D2(x) are constants characteristic of a particular combination of 

instrument and polymer/solvent type. Equation (1) is the modal- 
positional calibration equation for a GPC instrument. It specifies 
the precise elution volume at which the maximum peak-height of a 

monodisperse polymer’s chromatogram occurs. The GPC chromatogram 
for this species-polymer will be approximated by a gaussian 

distribution ( 3 ) ,  

where is the elution volume at which the modal position 

occurred, and u2(x) is the variance of the gaussian distribution. 

The parameter u2(x) is the spreading coefficient of the instru- 
ment and has a magnitude that is also dependent on the instrument 
and the polymer/solvent mixture ( 4 ) .  

By changing the variable of a gaussian chromatogram from elu- 

tion volume, v, to molecular weight via Equation (l), a lognormal 

molecular weight distribution is obtained (5). But, the modal 

position of a gaussian distribution corresponds to the median 
position of a lognormal distribution (M(x) = k(x)) (6). 
once a series of monodisperse polymers has been eluted to determine 

Equation (l), the chromatograms of the monodisperse species can be 
analyzed to determine the apparent molecular-weight averages. 

Therefore, with 

Hence, 

H(v) = G(v-G), 
m - 

Mwa(x) = J H(v) (Dl(x) - D2(x) V) dv, 

and Mna(x) 111 H(v) (-Dl(x) + D2(x) V) dvs ( 3 )  

(2) 
0 

00 - 
0 

the dispersion parameter u2(x) and the monodisperse molecular- 

weight M(x) will be related to the apparent values through: 
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404 R I N G ,  STRATTON, AND SCHROEDER 

I f  a new d i s p e r s i o n  parameter  i s  d e f i n e d  as 

then from e i t h e r  Equat ion ( 4 )  o r  Equat ion (5) t h e  d i s p e r s i o n  param- 

eter can be measured d i r e c t l y  as 

A p o l y d i s p e r s e  chromatogram is descr ibed  as t h e  sum of s e v e r a l  

monodisperse s p e c i e s  chromatograms: 

OJ 

H(v) = 1 G(v-G) W(;) d j ,  

where W(v) i s  t h e  weight - f rac t ion  of each s e p a r a t e  s p e c i e s ,  o r  t h e  

molecular  weight d i s t r i b u t i o n .  I f  t h e  shapes of t h e  monodisperse 

s p e c i e s '  chromatograms are f a i r l y  g a u s s i a n  and t h e  c a l i b r a t i o n  

equat ion  i s  l i n e a r ,  then  r e g a r d l e s s  of t h e  a c t u a l  W(j), the  

apparent  molecular-weight averages ,  determined f o r  a p o l y d i s p e r s e  

sample through Equat ion ( 2 )  and ( 3 ) ,  w i l l  a l s o  be c o n v e r t i b l e  t o  

t h e  a c t u a l  molecular-weight v a l u e s  by t h e  same i n s t r u m e n t a l  

spreading  c o e f f i c i e n t  of Equat ion (6) ( 7 ) .  Thus, f o r  po lydisperse  

samples : 

0 ,. 

These equat ions ,  however, r e l y  on a n  a c c u r a t e  de te rmina t ion  of 

t h e  modal-posi t ional  c a l i b r a t i o n  e q u a t i o n ,  which p r e d i c t s  t h e  chro- 

matographic p o s i t i o n  of M(x). When real p o l y d i s p e r s e  c a l i b r a t i o n  

s t a n d a r d s  are u t i l i z e d ,  only t h e  weight-average or  t h e  number- 

average  or  both molecular  weights  are known, but  not  t h e  median 

va lue  M(x). Genera l ly ,  very narrow c a l i b r a t i o n  samples are chosen 

where G ( x )  

t h e  median va lues  would be very small. But s t i l l ,  an e r r o r  w i l l  

be propagated i f  e i t h e r  &(x) o r  Kn(x) i s  s u b s t i t u t e d  f o r  %(x). 

w 

N 

- 
Mn(x) so t h a t  t h e  e r r o r  between e i t h e r  values  and 
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DISPERSION-COMPENSATED CALIBKATION 405 

The magnitude of t h i s  e r r o r  can be estimated by considering 
A 

lognormal W(v) func t ions .  For such polymers, i d e a l  i n f i n i t e l y  

resolved GPC chromatograms, where u2(x) = 0, would be t rue  depic- 

bu t ,  when u2(x) > 0,  these  chromatograms would s t i l l  be gaussian 

because of the reproductive proper t ies  of gaussian d i s t r i b u t i o n s  

(8,9), although demonstrating empirical  variances aV(x)  > 02(x) .  

Therefore, 

2 

(12) 
- 1 2  2 
Mwa(X) = "Mx) exp(T D2(x) av (x ) ) ,  

- 1 2  2 
Mna(x) = i ( x )  exp(- 7 D2(x), a v ( x ) > .  

The notable f ea tu re  is t h a t  G(x) would remain constant such tha t  

M(X)  = (EWa(x) Mna(x))1/2 = (M,(x) Mn(x))1/2* 
- 

Assigning a t rue  molecular-weight average t o  a modal pos i t ion  

w i l l  r e s u l t  i n  a pos i t i ona l  e r r o r  whose magnitude involves the 

a c t u a l  variance of the molecular-weight d i s t r i b u t i o n s .  By subs t i -  

t u t i n g  Equation (1) i n t o  both Equation ( 9 )  and Equation ( l o ) ,  the 

c a l i b r a t i o n  equations determined from a p o s i t i o n a l  e r r o r  a re :  

( 1 3 )  
-1 1 2  

I n  %(x) = Dl(x) - D2(x)v + z D2(x) cr2(x), 

I n  Mn(x) = Dl(x) - D ~ ( x ) v  - - D2(x) 02(x) ,  ( 1 4 )  
-1 2 

and 

-1 

where E;(x) and Mn(x) are the  molecular-weight averages uncorrected 

f o r  both d i spe r s iona l  and p o s i t i o n a l  e r r o r s .  Both Equation (13) 
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406 RING, STRATTON, AND SCHROEDER 

and Equation (14) will be referred to as positional-error calibra- 

tion equations. 

A direct conclusion from either Equation (13) or Equation (14) 

is that narrow, fractionated polymers will minimize the positional 

error because 02(x) 0 .  Broader calibration standards, whose 

maximum chromatogram peaks are less likely to be determined pre- 

cisely, will yield proportionately greater errors as a2(x) 

increases. 

calibration standard series, introducing an error that could 

possibly exhibit a discernible functionality with elution volume. 

To avoid this positional error, McCrackin's computation tech- 

But, 02(x) may also randomly vary within the actual 

nique analyzes each calibrating polymer's chromatogram for its 

shape and determines a calibration equation that will directly 

recalculate its true weight-average or number-average molecular 

weight (1). The forms of these new calibration equations are 

determined by substituting Equation (2)  and Equation (3 )  into 

Equation (7) and Equation ( 8 ) ,  respectively, yielding: 
m - 

Mw(x) = I H(v) (Dl(x) - Dz(x) v i- In P(x)) dv, 
0 

m - 
and Mn(x) = 1 / 1 H(v) (- Dl(x) + D2(x) v + In P(x)) dv. 

0 

The resulting calibration equations are: 

ln&(x) = Dl(x) - D2(x) v + In P(x), 

In %(x) = DL(x) - D2(x) v - In P(x), 
(15) 

(16 )  and 

which will be referred to as dispersion-compensated calibration 

(DCC) equations. As is evidenced, DCC equations are the result of 

a symmetric dispersion operation about the modal-positional 

calibration equation. 

The advantage of McCrackin's calibration technique is that a 

calibration equation will always be positionally and dispersionally 

correct regardless of whether the actual calibration-polymer dis- 
tributions were broad or narrow. Furthermore, it also represents 

a greatly simplified method procedurally, because no independent 
dispersion determination is necessary and positional accuracy is 
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DISPERSION-COMPENSATED CALIBRATION 407 

assured  even when only one type of molecular-weight average is 

known, s ince  Equation (15) and Equation (16) a r e  ca l cu la t ed  inde- 

pendently of one another .  

Universa l  Ca l ib ra t ion  

The technique of un ive r sa l  c a l i b r a t i o n ,  i n  which the  ca l ib ra -  

t i o n  equat ion f o r  one type of polymer is t r a n s l a t e d  i n t o  a c a l i -  

b r a t i o n  equat ion f o r  another  type of polymer, is based on the  

theory t h a t  GPC sepa ra t e s  according t o  the  so lva ted  hydrodynamic 

volume of polymers r a t h e r  than  t h e i r  molecular weights (2). Hydro- 

dynamic volume is  def ined a s  the  product of the  i n t r i n s i c  viscos-  

i t y  and the  molecular weight of a monodisperse polymer, [q]xM(x), 
o r  simply i n  terms of molecular weight (through the  Mark-Houwink 

cons tan ts  K, and ax) as K,M1+ax(x). The p red ic t ion  f o r  GF'C is 

t h a t  two polymers of d i f f e r e n t  molecular weights but i d e n t i c a l  

hydrodynamic volumes w i l l  e l u t e  a t  the  same e l u t i o n  volume. 

I d e a l l y  then,  the  modal-positional equat ion f o r  one polymer should 

be conve r t ib l e  t o  the  second polymer by manipulation of the  Mark- 

Houwink cons tan ts .  But, t h i s  i s  t h e o r e t i c a l l y  only va l id  f o r  

i n f i n i t e  r e so lu t ion  (9,. 
and 5), the  point  of e l u t i o n  f o r  a monodisperse polymer is def ined 

a s  the  modal pos i t i on  of the  monodisperse spec ie s '  chromatogram. 

Therefore ,  the  p o s s i b i l i t y  t h a t  two monodisperse polymers with 

equal  mean hydrodynamic volumes, but d i s s i m i l a r  spreading coef- 

f i c i e n t s ,  may have d i f f e r e n t  median values  f o r  t h e i r  hydrodynamic 

volume d i s t r i b u t i o n s  and thus d i f f e r e n t  modal values  f o r  t h e i r  

r e spec t ive  chromatograms is  not considered.  Furthermore, the  

r e a l i t y  of po lyd i spe r s i ty  and i t s  p o t e n t i a l  f o r  producing a 

p o s i t i o n a l  e r r o r  i s  a l s o  ignored by t h i s  theory. 

A s  demonstrated previously (Equations 4 

S i g n i f i c a n t l y ,  the  empir ica l  b a s i s  f o r  a un ive r sa l  c a l i b r a t i o n  

has  been the  repeated observa t ion  (z-g) t h a t  the  product of the  

weight-average molecular weight and the  i n t r i n s i c  v i scos i ty  f o r  a 

series of po lydisperse  polymers w i l l  be co l inea r  i n  respec t  t o  

modal e l u t i o n  volumes, with the  same product f o r  a second series 

of po lydisperse  polymers of d i f f e r i n g  Mark-Houwink cons tan ts ,  
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408 R I N G ,  STKATTON, AND SCHROEDER 

Equat ion (17) ,  however, has  been i n t e r p r e t e d  as only an approxima- 

t i o n  t o  r e a l i t y  where t h e  weight-averages are a c t u a l l y  very c l o s e  

i n  va lue  t o  t h e  number-averages. But, what is important  is t h a t  

each e l u t i o n  volume increment of a polymer s o l u t i o n  a f t e r  separa-  

t i o n  w i l l  be i s o l a t e d  as a p o l y d i s p e r s e  s o l u t i o n  due t o  nonin- 

f i n i t e  r e s o l u t i o n .  Therefore ,  each e l u t i o n  volume increment w i l l  

have an i n t r i n s i c  v i s c o s i t y  which measures a number-average hydro- 

dynamic volume (13-14) and a v iscos i ty-average  molecular  weight. 

Because t h e  v iscos i ty-average  molecular  weight  is f r e q u e n t l y  

approximated by t h e  weight-average molecular  weight ,  Equat ion ( 1 7 )  

a c t u a l l y  p r e d i c t s  t h a t  t h e  weight-average of each e l u t i o n  volume 

increment f o r  one polymer type w i l l  be p r o p o r t i o n a l  t o  t h e  weight- 

average f o r  a second polymer type.  

I n  e f f e c t ,  a weight-average DCC equat ion  d e s c r i b e s  t h e  weight- 

average molecular  weight  t h a t  each e l u t i o n  volume increment w i l l  

have f o r  a polymer s o l u t i o n  t h a t  has  been s e p a r a t e d  wi th  a par- 

t i c u l a r  d i s p e r s i o n  c o e f f i c i e n t  of P(x). This  is t h e  reason t h a t  a 

GPC chromatogram can be analyzed d i r e c t l y  wi th  such an equat ion  t o  

y i e l d  an a c c u r a t e  weight-average f o r  t h e  e n t i r e  polymer o r  polymer 

s o l u t i o n .  Thus, Equat ion (18) a t  f i r s t  i n s p e c t i o n  seems capable  

of i n t e r c o n v e r t i n g  one weight-average DCC equat ion  d i r e c t l y  i n t o  

another .  But, t h e  s p e c i f i c  d i s p e r s i o n  c o e f f i c i e n t  t h a t  one 

polymer type  may have i s  independent of t h e  o t h e r .  Therefore ,  

a l though d i s p e r s i o n  c o e f f i c i e n t s  are not t r a n s l a t a b l e ,  t h e  equal-  

i t y  of Equat ion (18) s t i l l  remains, a l lowing  t h e  modal-posi t ional  

equat ion  of polymer "1" t o  be d e s c r i b e d  i n  terms of t h e  modal- 

p o s i t i o n a l  equat ion  of polymer "2" and both d i s p e r s i o n  coef-  

f i c i e n t s .  Thus, by s u b s t i t u t i n g  Equat ion (15) f o r  both polymers 

i n t o  Equat ion (18): 

I n  K(1) = a + B In Z ( 2 )  - R In  ~ ( 2 )  + I n  ~ ( 1 1 ,  (19) 

where a = In (K2/Kl) / (1 + a l l ,  
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DISPERSTON-COMPENSATED CALIBRATION 409 

and 8 = (1 + a2)  / (1 + a l l .  

What is notab le  about  Equat ion (19) is t h a t  when I n  P(1) = In 
P(2)  = 0, t h e  s tandard  c a l i b r a t i o n  equat ion  t ransformat ion  u t i -  

l i z e d  f o r  u n i v e r s a l  c a l i b r a t i o n ,  known as t h e  Coll-Prusinowski 

formalism (15,16), is obtained.  Thus, when a t r u e  modal- 

p o s i t i o n a l  c a l i b r a t i o n  e q u a t i o n  f o r  polymer "2" is t r a n s l a t e d  v i a  

t h e  Coll-Prusinowski formalism, both d i s p e r s i o n  c o e f f i c i e n t s  of 

Equat ion (19)  are neglec ted .  This  n e g l e c t  would be inconsequen- 

t i a l  i f  i n s t r u m e n t a l  r e s o l u t i o n  of both polymers w a s  i n f i n i t e ,  o r  

i f  6 In  P(2) = I n  P(1). But, s i n c e  t h e  former c o n d i t i o n  i s  

impossible  and t h e  l a t t e r ,  a t  b e s t ,  s e r e n d i p i t o u s ,  at  least  a 

d i s p e r s i o n a l  e r r o r  w i l l  always be expected.  

Analogously, t h e  a p p l i c a t i o n  of t h e  Coll-Prusinowski formalism 

t o  a p o s i t i o n a l - e r r o r  equat ion  [Equat ion (13 ) ] ,  der ived  from t h e  

assignment of weight-average molecular  weights  t o  t h e  modal posi-  

t i o n s  of t h e  c a l i b r a t i o n  chromatograms, r e s u l t s  i n  included e r r o r s  

t h a t  a l s o  r e l y  on f o r t u i t o u s  r e l a t i o n s h i p s  between t h e  p o s i t i o n a l  

e r r o r  and t h e  d i s p e r s i o n a l  e r r o r  f o r  minimizat ion.  

Thus, t o  avoid  both d i s p e r s i o n a l  e r r o r s  and p o s i t i o n a l  e r r o r s ,  

i t  would be advantageous t o  be a b l e  t o  t r a n s l a t e  a DCC equat ion  

f o r  polymer "2" d i r e c t l y  i n t o  a DCC equat ion  f o r  polymer "1". 

Applying t h e  p r i n c i p l e  of d i s p e r s i o n  compensation to t h e  modal- 

p o s i t i o n a l  Equat ion (19) y i e l d s :  

In &,,(I) = a + 6 In M(2) - 8 I n  ~ ( 2 )  + 2 In ~ ( 1 1 ,  

In %(I) = a + B I n  i i (2)  - A I n  ~ ( 2 ) .  

(20) 

(21) and 

The e l i m i n a t i o n  of t h e  d i s p e r s i o n  c o e f f i c i e n t  P(1)  i n  Equat ion 

(21)  i s  noteworthy because t h i s  parameter  could not be d e r i v e d  

wi thout  independent d i s p e r s i o n  measurements. When both DCC 

e q u a t i o n s  f o r  polymer "2" (Equat ions 15 and 16)  are t r a n s l a t e d  

d i r e c t l y  by t h e  Coll-Prusinowski formalism, t h e  r e s u l t s  a r e  : 

I n  F w ( l )  = 0: + A In z ( 2 )  + 8 In P ( 2 ) ,  (22)  

and 
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410 R I N G ,  STRATTON , AND SCHROEDER 

The comparison of Equat ion (21) and Equat ion ( 2 3 )  demonstrates  

t h a t  t h e  number-average DCC equat ion  i s  a t r u e  u n i v e r s a l  form and 

c a n  be t r a n s l a t e d  i n t o  t h e  number-average DCC equat ion  f o r  any 

o t h e r  polymer whose Mark-Houwink c o n s t a n t s  are known, through t h e  

Coll-Prusinowski formalism. The comparison of Equat ion (20) and 

Equat ion (22) demonstrates  t h a t  t h e  weight-average DCC equat ion  

w i l l  not  t r a n s l a t e  through t h e  Coll-Prusinowski formalism. When 

one such weight-average equat ion  is t r a n s l a t e d ,  a d i s p e r s i o n  e r r o r  

w i l l  r e s u l t  between what is obta ined  and t h e  t r u e  r e l a t i o n s h i p .  

METHODS 

Waters-brand S t y r a g e l  columns wi th  t h e  nominal exc lus ion  

l i m i t s  of l o2 ,  L O 3 ,  l o 4 ,  lo5,  and 1 0 6 x  

p u r i f i e d  t e t r a h y d r o f u r a n  (THF) as t h e  e l u t i o n  s o l v e n t .  The flow 

rate w a s  2 mL/min. A Perkin-Elmer LC-55B spectrophotometer  was 

opera ted  at  235 nm f o r  t h e  c e l l u l o s e  t r i c a r b a n i l a t e s  and 225 nm 

f o r  t h e  p o l y s t y r e n e  c a l i b r a t i o n  s tandards .  The polys tyrene  s tan-  

d a r d s  were obta ined  from t h e  nranufacturers l i s t e d  i n  Table I. 

C e l l u l o s e  t r i c a r b a n i l a t e s  were prepared and i n j e c t e d  i n t o  t h e  GPC 

columns accord ing  t o  t h e  methods of Schroeder  and Haigh (17). 

were u t i l i z e d  w i t h  

A l l  c a l c u l a t i o n s  were performed by computer programs obtained 

from McCrackin. Two programs are a v a i l a b l e :  Program C a l i b  

c a l i b r a t e s  GPC columns by t h e  method descr ibed  in (i), and program 

GPC computes t h e  molecular  weight averages  from chromatograms of 

polymer samples. 

RESULTS AND DISCUSSION 

D i r e c t  C a l i b r a t i o n  

The chromatograms of t e n  polys tyrene  samples which were u t i -  

l i z e d  as c a l i b r a t i o n  s t a n d a r d s  are depic ted  i n  Fig.  1. Each 

chromatogram has been normalized t o  t h e  same area and has  been 

c h a r a c t e r i z e d  by t h e  c a l c u l a t i o n  of i ts  s t a t i s t i c a l  d i s t r i b u t i o n  

parameters :  i n  p a r t i c u l a r ,  i ts  mean (y), median (v), mode (i), 
and t h e  s tandard  d e v i a t i o n  (uV) wi th  r e s p e c t  t o  e l u t i o n  volume. 

These va lues  f o r  each chromatogram are l i s t e d  i n  Table 1 a long  wi th  
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412 R I N G ,  STRATTON, AND S CHROEDER 

TABLE 1 

Vendor-Supplied Weight-Average Molecular Weights 
and GPC Statistical Chromatographic Parameters 

Sample 
1 

2 
3 
4 
5 

6 
7 

a 
9 
10 

Supplement 

PCC 

PCC 

PCC 

PC c 
DPR 

PIB 

WA 

PC c 
WA 

PIB 

- 
Mw [vs I 

4.80 103 

1.03 103 
1.98 104 

5.10 104 
1.25 105 

2.39 105 

4.70 105 
1.80 106 
2.70 x lo6 

3.56 x lo6 

- 
V 
202 

194 
188 

178 
170 

164 
158 

145 
143 

139 

? 
202 

194 
i a a  
178 
170 

164 
158 

144 
141 
138 

A 

V 
202 

194 
i a a  
178 
170 

164 
158 

138 
142 

136 

UV 

3.49 

3 .8a 
3 .a5 
3 .a1 

4 .a5 

4.95 

4.62 
6.98 

a .a2 
9.13 

sk 

0 .o 
0 .o 
0 .o 
0.0 

0 .o 
0 .o 
0 .o 
0.430 
0.548 
0.340 

PCC = Pressure Chemical Company. 
DPR = Dow Physical Research Lab. 
PIB = Polytechnic Institute of Brooklyn. 
WA = Waters Associates. 

their respective vendor-supplied, weight-average molecular 

weights, ~ [ V S  J . 
A 

The modal value V, is the parameter customarily selected for 
graphical calibration of GPC instruments because it corresponds to 

the easily identifiable maximum peak-height of a chromatogram. 

Both 

but all three parameters will not be equal when skewing is pre- 

sent. The degree of skewing for each chromatogtam is measured by 

and ? will be equal when the chromatograms are symmetrical, 

sk = (7 - ?) uV, 

and, as can be seen from Table 1, chromatograms No. 1 through 7 
are symmetric, since 7 = V = V and sk = 0; however, for chromato- 

grams No. 8, 9, and 10, 7 > 7 > and sk > 0. They are obviously 

nongaussian. Specifically, this means that for the skewed chromato- 

grams, the modal elution volume will not correspond positionally 

to M(x). Thus, a modified positional-error equation will result 

N *  

N 
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DISPI?,IZSION-COMPETJSATEU CALIBRATION 413 

from their inclusion in a graphical calibration. The extent of 

this modification can be estimated by assuming that %(x) may 

possibly reside closer to either 

error equation determined from the symmetric chromatograms is 

valid through the skewed chroma tograms. 

or v, and that the positional- 

For all ten polystyrene chromatograms, three calibration 

equations were derived from a linear regression of the logarithm 

of the vendor-supplied weight-average molecular weight and the 

elution volume parameters. The three callbration equations 

obtained were: 
- -  

In h[V] = 29.87 - 0.1064 7, - -  
In Mw[V] = 29.42 - 0.1040 7, ( 2 4 )  

and 

but, the single calibration equation that was determined from the 

symmetric chromatograms No. 1 through 7 was 

In Ew[t] = 28.67 - 0.09987 t, 

ln&[?] = 29.45 - 0.1041 7. 
Since Equation (25) is approximately equal to Equation ( 2 4 ) ,  the 

median elution volume V is assumed to be positionally correct for 
M(x). Thus, the observable effect of utilizing either or for 
- 

the skewed chromatograms instead of is that linear error func- 

tions are included that affect both the slope and intercept of 

Equation ( 2 4 ) .  

The dispersion-compensated calibration equation obtained via 

McCrackin's computer program for all ten chromatograms was 

lnK[t] = 28.93 - 0.1017 V. ( 2 6 )  

It varies in both slope and intercept from Equation ( 2 4 ) .  If 

Equation ( 2 4 )  were a true modal-positional calibration equation, 

the expectation is that only the intercepts would differ due to 

the inclusion of the constant dispersional parameter In P ( x )  in 

Equation ( 2 6 ) ;  however, because of the positional error of 

assigning the weight-average molecular weight to a modal position, 

the actual form of Equation ( 2 4 )  is given by Equation (13). But, 
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414 RING, STRATTON, AND SCHROEDER 

by substituting Equations ( 6 ) ,  (9), and (12) into Equation (7) and 

simplifying, the standard relationship between dispersion and 

distribution variances for the symmetrical chromatograms was 

obtained (18) : 

(27) 
2 

&x) = uv(x) - u2(x). 
By further substitution of Equation (27)  into Equation (13) ,  the 

positional-error equation can be compared with the DCC equation, 

Thus, the fact that the parameter uv actually does show a func- 

tionality with elution volume in Table 1 explains why the slope 

of Equation (24) was also different from the slope of Equation 

(26). But, more importantly, Equation (28) demonstrates that any 

weight-average molecular weight calculated from a positional-error 

equation will always be greater than the weight-average calculated 

from a true modal-positional equation with dispersion correction 

performed either independently or simultaneously, as in McCrackin's 

method. 
be obtained for any polymer standards that will yield an empirical 

uv equal to zero. 

weight that is uncorrected for dispersion and positional errors, 

and will still yield incorrect values when corrected for just peak 

dispersion. 

This is true because no distribution variance a2(x> can 

I - 2 Therefore, MW(x) is a weight-average molecular 

Table 2 compares the vendor-supplied weight-average molecular 

weights with the weight-averages calculated for each polystyrene 

chromatogram by all four calibration equations mentioned, in a 

numerical approximation of Equation (2). As expected, the 
dispersion-compensated calibration equation (Equation 26) 
demonstrated calculated weight-average values %[ t] with an 
insignificant average deviation from the vendor-supplied values. 

In contrast, all three graphical methods of calibration produced 

larger average deviations. The values calculated from the median 

calibration (Equation 24) &[V] were consistently larger than the 

values calculated from McCrackin's calibration Fw[ t], as predicted 
- u  
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416 R I N G ,  STJUTTON , AND SCHROEDER 

by Equat ion (28) .  The e f f e c t  of p o s i t i o n a l  d i screpancy  between 

t h e  modal e l u t i o n  volume V and t h e  va lue  of M(x) from t h e  skewed 

chromatograms i s  d e p i c t e d  by t h e  K[c] v a l u e s  f o r  chromatograms 

No. 8, 9,  and 10. When skewing is p o s i t i v e  ( s k  > 0) ,  t h e  modal 

v a l u e  reduces t h e  e f f e c t  of p o s i t i o n a l  e r r o r  and produces va lues  

very c l o s e  t o  both t h e  dispersion-compensated and t h e  vendor- 

s u p p l i e d .  

A w 

The s u b s t i t u t i o n  of Equat ion (27) i n t o  Equat ion (11) r e s u l t s  i n  

a n  express ion  t h a t  may be used t o  c a l c u l a t e  t h e  number-average 

moleculai. weight  of each c a l i b r a t i n g  polymer's chromatogram, 

2 2 - 
Mn(x) = z w ( x )  exp(- D2(x) av)  / P2(x) .  

Knowledge of t h e  spreading  c o e f f i c i e n t  P ( x ) ,  however, is requi red .  

But, McCrackin's technique can a l s o  be used i n  a n  i t e r a t i v e  

f a s h i o n  t o  determine which v a l u e  of P(x) w i l l  y i e l d  a number- 

average DCC e q u a t i o n  t h a t  is p a r a l l e l  to t h e  prev ious ly  determined 

weight-average DCC equat ion.  For v a r i o u s  v a l u e s  of P ( x ) ,  Table  3 

demonstrates  t h e  response of t h e  computer program in c a l c u l a t i n g  

t h e  new number-average DCC equat ions .  S ince  McCrackin's technique 

is not r e s t r i c t e d  t o  l i n e a r  e q u a t i o n s ,  q u a d r a t i c  c o e f f i c i e n t s  w i l l  

occur  when inc luded-er ror  f u n c t i o n s  are a l s o  n o n l i n e a r .  As can be 

seen  in Table 3, t h e  b e s t  va lue  of P(x) which gave t h e  lowest  

TABLE 3 

Number-Average DCC Equat ions 

P Dl(2) D2(2) D3(2) REF 

0.99 29 .OO -0.1022 1.185 x 0.61 

0.98 29.02 -0.1021 1.154 x 10-6 0.47 

0.97 29.01 -0.1018 0.0 0.42 

0.96 29.03 -0.1018 4.240 x 10-9 0.59 

0.95 29.09 -0 . lo23 1.458 x 10-6 0.46 

a R e l a t i v e  e r r o r  determined by McCrackin's computer program by 
comparing number-average va lues  a g a i n s t  i n p u t t e d  number-average 
va lues .  
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DISPERSION-COMPENSATED CALIBRATION 417 

r e l a t i v e  e r r o r ,  and a number-average DCC equation approximately 

p a r a l l e l  t o  the  weight-average DCC equation was P(x) = 0.97. 

The s u b s t i t u t i o n  of Equation (27) i n t o  Equation (11) r e s u l t s  i n  

an  expression t h a t  may be used t o  c a l c u l a t e  the  number-average 

molecular weight of each calibrating-polymer's  chromatogram, 

2 2 - 
Mn(x) =%(XI exp(- D2(x) uv) / P2(x>. 

Knowledge of the  spreading c o e f f i c i e n t  P(x) ,  however, is required.  

But, McCrackin's technique can a l s o  be used i n  an i t e r a t i v e  

fash ion  t o  determine which value of P(x) w i l l  y i e ld  a number- 

average DCC equation t h a t  is p a r a l l e l  t o  the  previously determined 

weight-average DCC equation. For various values of P(x),  Table 3 

demonstrates the  response of the computer program i n  ca l cu la t ing  

the  new number-average DCC equations. Since McCrackin's technique 

i s  not r e s t r i c t e d  t o  l i n e a r  equations,  quadra t ic  c o e f f i c i e n t s  w i l l  

occur when included-error func t ions  a r e  a l s o  nonlinear.  As can be 

seen i n  Table 3, the  best value of P(x) which gave the  lowest 

r e l a t i v e  e r r o r ,  and a number-average DCC equation approximately 

p a r a l l e l  t o  the  weight-average DCC equation was P(x) = 0.97. 
- 

I n  t h i s  ca l cu la t ion ,  + [ t ]  values should be used f o r  &(x) 

i n s t ead  of &[vs]  because & [ t ]  va lues  are needed t o  complement 

t h e  respec t ive  weight-averages. Therefore, the  experimental 

e r r o r s  assoc ia ted  with ~ [ v s ]  values do not en te r  i n t o  these  

ca l cu la t ions .  

U t i l i z i n g  Equation (25) t o  analyze the  chromatogram of poly- 

s ty rene  SRM-706 (E), K [ t ]  = 2.80 x lo5 was ca lcu la ted .  

value f e l l  between the  weight-average values reported f o r  l i g h t  

s c a t t e r i n g  (2.58 x 105) and sedimentation equi l ibr ium (2.88 x lo5). 

This 

The number-average molecular weight ca lcu la ted  a t  P(x) = 0.97 

gave % [ t ]  = 1.49 x 105, which may be compared with the  membrane 

osmometry number-average of 1.37 x 105. 

d i s p e r s i t y  (Fw[ t ]  / Z n [ t ]  = 1.88) was i d e n t i c a l  t o  the  polydisper- 

s i t y  ca l cu la t ed  from the  r a t i o  of the  l i g h t  s c a t t e r i n g  t o  the  

membrane osmometry values; however, both the  ca l cu la t ed  weight- 

average and number-average molecular weights have a r e l a t i v e  e r r o r  

The ca lcu la ted  GPC poly- 
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418 R I N G ,  STRATTON, AND SCHROEDER 

of 8% g r e a t e r  than the  d i r e c t  measurement. This e r r o r  is wi th in  

acceptab le  l i m i t s  f o r  GPC. 

Universa l  Ca l ib ra t ion  

With the  i n t e n t i o n  of ob ta in ing  DCC equat ions f o r  c e l l u l o s e  tri- 

c a r b a n i l a t e s  (CTC), both the  weight-average and the  number-average 

DCC equat ions  f o r  polystyrene were t r a n s l a t e d  v i a  the  Coll-Prusin- 

owski formalism. The cons tan ts  a and 6 were ca l cu la t ed  using the  

r e spec t ive  Mark-Houwink cons tan ts  [K2 = 1.179 x 

f o r  polystyrene,  K1 = 2.010 x 

I n  t h i s  s i t u a t i o n ,  however, i t  w a s  found necessary t o  s u b t r a c t  the  

P t i t syn-Eisner  co r rec t ion  f a c t o r  (0.15) from a t o  account f o r  

C T C ' s  dev ia t ions  from random c o i l i n g  ( 1 4 , Z O ) .  The discrepancy t h a t  

was discovered involved the  c a l c u l a t i o n  of a number-average 

g r e a t e r  than the  vendor-supplied weight-average f o r  the  narrowest 

sample (N-5) when the  co r rec t ion  w a s  not included. 

and a2 = 0.74 

and a1 = 0.92 f o r  CTC ( l o ) ] .  

The r e s u l t i n g  c a l i b r a t i o n  equat ions  were: 

In q(1) = 26.99 - 0.09217 v,  (29) 

and I n  %(1) - 27.06 -0.09226 V. (30) 
As expected and demonstrated i n  Table 4, the  weight-average values  

&[TI ca l cu la t ed  f o r  the  CTC chromatograms v ia  Equation (29) d i f -  

f ered from t h e  vendor-supplied weigh t-average values  ~ [ V S  1. 
v i r t u e  of the  d i f f e rence  between Equation (20) and Equation (22) ,  

t h e  d i spe r s iona l  e r r o r  would be: 

- 

By 

P2(1) / P26(2) = xw[vs ]  / &[TI. 

From Table 4 and with P(2) = 0.97, t he  d i spe r s iona l  c o e f f i c i e n t  was 

found t o  have an average va lue  of P(1)  = 0.67. This smaller P(x) 

va lue  f o r  CTC is cons i s t en t  with a g r e a t e r  degree of d i spe r s ion  due 

t o  a g r e a t e r  r i g i d i t y  of the  polymers i n  s o l u t i o n  (20). The COP 

rect DCC equat ion fo r  the  weight-average values  was determined t o  

be : 

In &(l) = 26.26 - 0.09217 V,  (31 )  - 
which y ie lded  much more reasonable  values  f o r  % I t ]  ~ [ v s ] .  The 

d i spe r s ion  c o e f f i c i e n t  ca l cu la t ed  from Equation (30) and Equation 

(31) w a s  P(1)  = 0.67 = exp(- (26.26 - 27.06)). 1 
2 
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DISPERSION-COMPENSATED CALIBRATION 4 19 

Table 4 

Cellulose Tricarbanilate Data 
- - - - 

Samplea DPW[vsJb DPw[T] P(l)c DPw[tI DPn[t] 
N -  5 550 1130 0 . 6 8  542 473  
"-30 1000 2310 0 . 6 4  1110 816 
N-70 1300 2480 0.70 1270 7 6 4  

Average 0 . 6 7  

azmples were obtained from Hercules, Inc. 
bDP = M 1 5 1 9 .  
'Calculated from P2(1) = P 2 6 ( 2 )  ~ w [ v s J  f Kw[T]. 

By simple inspection of Equation ( 2 4 )  in regard to Equation ( 2 6 ) ,  

the application of the Coll-Prusinowski formalism to the position- 

al-error equation for the polystyrenes would have resulted in 

weight-average molecular weights even larger than the &[TI values. 

This is a consequence of the incorporation of both dispersional 
errors and positional errors. This fact can be demonstrated by 

simple application of the Coll-Prusinowski formalism to Equation 

( 2 8 ) .  
- 

In MJ1) = a -I- 6 In c ( 2 )  + B In P ( 2 )  + L  6 Di(2) u$, 2 
which is Equation ( 2 2 )  with a positional-error term that will 

always be greater than zero because uv will never be zero. 2 

SUMMARY 
The calculation of reliably accurate molecular-weight averages 

for polymer samples through gel permeation chromatography depends 

on the determination of a true modal-positional calibration and an 

instrumental spreading coefficient. The common graphical procedure 

of assigning a weight-average molecular weight value to a modal 

position on a chromatogram will result, however, in an equation 

with a positional error that will produce calculated weight- 

averages that are always greater in value than the dispersionally 

correct value. Because the dispersion correction will generally 

not be appropriate for the positional error, further correction of 

these values for dispersional error w i l l  not properly correct these 
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420 RING, STKATTON, AND SCHROEDER 

values. To avoid this situation, McCrackin has developed a com- 

puterized calibration technique which will calculate a dispersion- 

compensated calibration equation for either weight-average or 

number-average molecular weight that is dispersionally and posi- 

tionally correct. Dispersion-compensated calibration equations can 

be used to directly analyze a GPC chromatogram to obtain an ac- 

curate value for the particular molecular weight-average that was 

originally used to obtain the equation without further dispersion 

correction. 

The problems of positional and dispersional errors are generally 

magnified when a calibration equation for one polymer type is con- 

verted, by the principle of universal calibration, into the equa- 

tion for another polymer type whose identical hydrodynamic volume 

corresponds to a different molecular weight. Because a number- 

average dispersion-compensated calibration equation is properly 

balanced for the correct dispersion terms, it is a true universal 

form and can be translated into the number-average dispersion- 

compensated equation for another polymer type through a universal 

calibration transformation. 

Portions of this work were used by the author (G.J.F.R.) as par- 

tial fulfillment of the requirements for the Ph.D. degree at The 

Institute of Paper Chemistry. 
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ax o r  kx 

CALIBRATION NOMENCLATURE 

The Mark-Houwink exponent o r  c o e f f i c i e n t  f o r  

polymer "x" determined from t h e  double l o g a r i t h -  

m i c  p l o t  of i n t r i n s i c  v i s c o s i t y  and molecular 

weight. 

The c o e f f i c i e n t s  of a g e n e r a l i z e d  GPC polynomial 

c a l i b r a t i o n  equat ion ,  j = 1, 2 ,  3 ,  etc. 
D j ( x >  

G(v-v) The gaussian-shaped GPC chromatogram of a mono- 

d i s p e r s e  polymer. 

The GPC chromatogram f o r  any monodisperse or  

po lydisperse  polymer. 

The molecular  weight f o r  a monodisperse polymer 

of type "x." 
The median va lue  of a molecular  weight d i s t r i b u -  

t i o n  f o r  a polymer of type "x." 

The weight- o r  number-average molecular  weight 

f o r  a polydisperse  polymer of type "x." 

The weight- o r  number-average molecular weight 

determined by GPC having both p o s i t i o n a l  and 

d i s p e r s i o n a l  e r r o r s .  

The weight- o r  number-average molecular  weight 

determined by GPC having only a d i s p e r s i o n a l  

e r r o r .  

The weight- o r  number-average molecular  weight 

determined from a GPC chromatogram u t i l i z i n g  

a dispersion-compensated c a l i b r a t i o n  equat ion.  

The weight-average molecular  weight determined 

from a u n i v e r s a l  c a l i b r a t i o n  equat ion  with com- 

pound p o s i t i o n a l  and d i s p e r s i o n a l  e r r o r s  f o r  two 

d i f f e r e n t  types of polymers. 
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V 

n 

V 

- -  
M W t V l  The weight-average molecular weight determined 

f o r  a GPC chromatogram with a c a l i b r a t i o n  

equat ion der ived from the  p lo t  of the weight- 

average molecular weight versus  the  mean e l u t i o n  

volume of a series of c a l i b r a t i o n  s tandards.  

The same as above but from a p lo t  of %[vs]  

versus  the  median e l u t i o n  volume. 

The same a s  above but  from a p lo t  of %[vs]  

versus  the  modal e l u t i o n  volume. 

The vendor-supplied weight-average molecular 

weight . 
The d i spe r s ion  co r rec t ion  f a c t o r  fo r  a polymer 

of type "x." 

The skewing parameter f o r  a GPC chromatogram. 

The s tandard dev ia t ion  of the  chromatogram f o r  

a monodisperse polymer. 

The empir ica l ly  measured e l u t i o n  volume on a GPC 

chromatogram. 

The e l u t i o n  volume corresponding t o  a modal 

pos i t i on  of a monodisperse polymer chromatogram. 

The mean e l u t i o n  volume of a GPC chromatogram. 

X 

The m d i a n  e l u t i o n  volume of a GPC chromatogram. 

The modal e l u t i o n  volume of a GPC chromatogram. 

A polymer's molecular weight d i s t r i b u t i o n ,  with 

the  molecular weight va r i ab le  transformed t o  the  

median e l u t i o n  volume by a median-positional 

c a l i b r a t i o n  equat ion.  

A symbol denot ing the  type of polymer, e.g., 

t h e  type of monomer it is composed of. 

The i n t e r c e p t  of the  Coll-Prusinowski formalism. 

The s lope  of the  Coll-Prusinowski formalism. 

The s tandard dev ia t ion  of the  molecular weight 

d i s t r i b u t i o n  of a polymer of type "x." 
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UV 

mean 

median 

mode 

RING,  STRATTON, AND SCHROEDER 

The standard deviation of a GPC chromatogram, 

determined from ( L  (H(v) (v - F)2) / 1 H(V>)~/~. 
Of GPC chromatogram: 
Of a lognormal molecular-weight distribution: 

(i (H(v) v) / 1 H(v)). 

In z(x) + 7 1 2  D2(x) 02(x). 

Of GPC chromatogram: The value of the elution 

volume, v, corresponding to the vertical line 

which divides a chromatogram into two parts 

having equal areas. 

Of a lognormal molecular-weight distribution: 
The value that divides the distribution into 

equal areas, symbolized as In M(x) .  

Of GPC Chromatogram: The value of the elution 

volume at the maximum peak height. 

Of a lognormal molecular-weight distribution: 
2 

In M(x) - D~(x) 02(x). 

w 
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