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DISPERSION-COMPENSATED CALIBRATION FOR GEL PERMEATION CHROMATOG-
RAPHY: THEORY AND UTILIZATION FOR DIRECT AND UNIVERSAL CALIBRATION

G. J. F. Ring, R. A. Stratton, and L. R. Schroeder

The Institute of Paper Chemistry
Appleton, Wisconsin 54912

ABSTRACT

This paper describes the error involved in the utilization of
nonmonodisperse polymer standards for the calibration of GPC
columns. It also demonstrates that the computer technique devel-
oped by McCrackin (1) produces a calibration equation from poly-
disperse standards that avoids this error. This equation,
referred to as dispersion—compensated, can successfully be incor-
porated into the theory of universal calibration to remove the
necessity of assuming infinite instrumental resolution. Further-
more, it is shown that only the calibration equation compensated
for number-average molecular weights is a true universal form.

INTRODUCTION

The conventional method of calibrating a gel permeation chro-
matography (GPC) instrument by plotting the weight-—average molecu—
lar weights of a series of polymer standards against the modal or
maximum peak-height positions of their respective chromatograms
results in a calibration equation that does not correctly recalcu—
late the weight~average molecular weights of the original chromat-
ograms used in the calibration. This is a consequence of two
sources of error: instrumental spreading which produces an appar-
ent increase in the polydispersities of the true molecular-weight
distributions, and the misassignment of a weight-average molecular
weight to the modal positien of a chromatogram which should
correspond to an intermediate value between the weight-average and

the number-average molecular weights.
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To circumvent this problem, McCrackin (1) has recently devel-
oped a computerized calibration technique capable of calculating a
calibration equation that is a function of the true modal positions
of gaussian monodisperse polymer chromatograms and the appropriate
dispersion correction term, specific to the polymer/solvent mix-
ture. This is accomplished by determining the most probable posi-
tion for a weight—average or a number-average molecular weight for
a polydisperse sample on its respective chromatogram and perform-
ing a regression analysis with similar values in a series of digi-
talized, input—data chromatograms of various molecular weights.
The equation determined by this technique is disperslon—compens—
ated, because it can be used directly to analyze a chromatogram
that has not been corrected for instrumental spreading, to obtain
an accurate molecular—weight average of the type used in the
calibration.

The purpose of this study is to demonstrate the superiority of
McCrackin's technique over the common graphical technique, which
utilizes an independently obtained dispersion correction, by docu-
menting the nature of the positional errors inherent in the
graphical technique. It is also the purpose of this study to pre-
sent a valid, dispersionally correct universal calibration derived
from the dispersion—compensated equations. The theory of univer-
sal calibration based on infinite resolution is invalid because it
neglects instrumental spreading and is subject to the propagation

of serious positional errors.

THEORETICAL DEVELOPMENT

Direct Calibration

The utilization of GPC to determine the molecular weight
averages of polymer samples requires calibrating an instrument for
the expected column-residency time, each molecular-weight and
determining the instrumental spreading coefficient (2). Residency
time is customarily measured in elution volume units by virtue of
a constant elution flow rate. The relationship between molecular
weight and elution volume is usually approximated by a linear,

semilogarithmic function:
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In M(x) = 1n M(x) = Di(x) — Da(x) v, (1)

where M(x) is the molecular weight of a monodisperse polymer of
type "x,” v is the elution volume, and the coefficients Dj{(x) and
Dyp(x) are constants characteristic of a particular combination of
instrument and polymer/solvent type. Equation (1) is the modal-
positional calibration equation for a GPC instrument. It specifies
the precise elution volume at which the maximum peak-height of a
monodisperse polymer's chromatogram occurs. The GPC chromatogram
for this species-polymer will be approximated by a gaussian
distribution (3),

G(v—%) = exp [~ %(v—e)z/ug(x)]/(ZW u2(X))1/2a

where v is the elution volume at which the modal position
occurred, and up(x) is the variance of the gaussian distribution.
The parameter u(x) is the spreading coefficient of the instru-
ment and has a magnitude that is also dependent on the instrument
and the polymer/solvent mixture (4).

By changing the variable of a gaussian chromatogram from elu-
tion volume, v, to molecular weight via Equation (1), a lognormal
molecular weight distribution is obtained (5). But, the modal
position of a gaussian distribution corresponds to the median
position of a lognormal distribution (M(x) = ﬁ(x)) (6). Hence,
once a series of monodisperse polymers has been eluted to determine
Equation (1), the chromatograms of the monodisperse species can be
analyzed to determine the apparent molecular-weight averages.
Therefore, with

H(v) = G(v-v),

o

J B(v) (D1(x) - Da(x) v) dv, (2)
0

Ewa(x)

0

1/ H(v) (-D1(x) + Dp(x) v) dv, (3)
0

and i1-|a (x)

the dispersion parameter uz(x) and the monodisperse molecular-

weight M(x) will be related to the apparent values through:

Fya(x) = M(x) exp(z D3(x) uz(x)), )
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and Fna(x) = M(x) exp(~ 3 Do (x) uz(x)). (5

If a new dispersion parameter is defined as

P(x) = exp(- 3 Da(x) up(x)), (6)

then from either Equation (4) or Equation (5) the dispersion param-—

eter can be measured directly as
P(x) = M(x)/Mgy(x) = Mpa(x)/M(x).

A polydisperse chromatogram is described as the sum of several
monodisperse species chromatograms:

@©
P

H(v) = | G(v=v) W(V) dv,
0

where W(G) is the weight-fraction of each separate species, or the
molecular weight distribution. If the shapes of the monodisperse
species' chromatograms are fairly gaussian and the calibration
equation is linear, then regardless of the actual W(Q), the
apparent molecular-weight averages, determined for a polydisperse
sample through Equation (2) and (3), will also be convertible to
the actual molecular-weight values by the same instrumental
spreading coefficient of Equation (6) (7). Thus, for polydisperse

samples:
My(x) = My (x) P(x), )]
and Mp(x) = M (x) PH(x). (8)

These equations, however, rely on an accurate determination of
the modal-positional calibration equation, which predicts the chro-
matographic position of §(x). When real polydisperse calibration
standards are utilized, only the weight-average or the number-
average or both molecular weights are known, but not the median
value ﬁ(x). Generally, very narrow calibration samples are chosen
where M;kx) “‘ﬁh(x) so that the error between either values and
the median values would be very small. But still, an error will

be propagated if either ﬁ;(x) or ﬁ;(x) is substituted for ﬁ(x).
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The magnitude of this error can be estimated by considering
lognormal W(G) functions. For such polymers, ideal infinitely
resolved GPC chromatograms, where u2(x) = 0, would be true depic-

tions of W(G) and would directly yield

My(x) = E(x) exp(%-D%(X) 62(x)), 9
and Ha(x) = Mx) exp(~ 3 Dy(x) 02(x)), (10)

where cz(x) is the actual variance of the distribution. Thus, as

a result

H(x) = () My(x)1/2,
and M, (x) /iy (x) = exp(Di(x) 02(x)), (11)
but, when up(x) > 0, these chromatograms would still be gaussian
because of the reproductive properties of gaussian distributions

(8,9), although demonstrating empirical variances oi(x) > 02(x).

Therefore,

Fua(x) = M(x) exp(y Dy(x) 02(0)), (12)
Mo (x) = M(x) exp(- %—Dg(X), Oi(x))-

The notable feature is that ﬁ(x) would remain constant such that
M(x) = (Mya(x) Mpa(x))1/2Z = (iy(x) Mp(x))1/2.

Assigning a true molecular-weight average to a modal position
will result in a positional error whose magnitude involves the
actual variance of the molecular-weight distributions. By substi-
tuting Equation (1) into both Equation (9) and Equation (10), the

calibration equations determined from a positional error are:

1n Wy(x) = D1(x) = Da(x)v + 5 Da(x) o2(x), (13)

L}

and 1n ﬁ;(x) D1(x) - Da(x)v - — D%(X) o2(x), (14)

—1 —
where M, (x) and M,(x) are the molecular-weight averages uncorrected

for both dispersional and positional errors. Both Equation (13)
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and Equation (14) will be referred to as positional-error calibra-
tion equatiomns.

A direct conclusion from either Equation (13) or Equation (14)
is that narrow, fractionated polymers will minimize the positional
error because oz(x) = 0, Broader calibration standards, whose
maximum chromatogram peaks are less likely to be determined pre-
cisely, will yield proportionately greater errors as oz(x)
increases. But, oz(x) may also randomly vary within the actual
calibration standard series, introducing an error that could
possibly exhibit a discernible functionality with elution volume.

To avoid this positional error, McCrackin's computation tech-—
nique analyzes each calibrating polymer's chromatogram for its
shape and determines a calibration equation that will directly
recalculate its true weight-average or number~average molecular
weight (1). The forms of these new calibration equations are
determined by substituting Equation (2) and Equation (3) into
Equation (7) and Equation (8), respectively, yielding:

™

My(x) = [ H(v) (D1(x) - Dp(x) v + 1n P(x)) dv,
0

o

and ﬁh(x) =1/ ] Hv) (- Di(x) + Do(x) v + 1n P(x)) dv.
0

The resulting calibration equations are:

1n M,(x) = Dy(x) = Dy(x) v + In P(x), (15)

and In M,(x) = D1(x) - Do(x) v - In P(x), (16)

which will be referred to as dispersion-compensated calibration
(DCC) equations. As is evidenced, DCC equations are the result of
a symmetric dispersion operation about the modal-positional
calibration equation.

The advantage of McCrackin's calibration technique is that a
calibration equation will always be positionally and dispersionally
correct regardless of whether the actual calibration—polymer dis-
tributions were broad or narrow. Furthermore, it also represents
a greatly simplified method procedurally, because no independent

dispersion determination is necessary and positional accuracy is
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assured even when only one type of molecular-weight average {is
known, since Equation (15) and Equation (16) are calculated inde-

pendently of one another.

Universal Calibration

The technique of universal calibration, in which the calibra-
tion equation for one type of polymer is translated into a cali-
bration equation for another type of polymer, is based on the
theory that GPC separates according to the solvated hydrodynamic
volume of polymers rather than their molecular weights (9). Hydro-
dynamic volume is defined as the product of the intrinsic viscos-
ity and the molecular weight of a monodisperse polymer, [n]yM(x),
or simply in terms of molecular weight (through the Mark-Houwink
constants Ky and ay) as KxM1+aX(x)- The prediction for GPC is
that two polymers of different molecular weights but identical
hydrodynamic volumes will elute at the same elution volume.
Ideally then, the modal-positional equation for one polymer should
be convertible to the second polymer by manipulation of the Mark-
Houwink constants. But, this is theoretically only valid for
infinite resolution (9). As demonstrated previously (Equations 4
and 5), the point of elution for a monodisperse polymer is defined
as the modal position of the monodisperse specles' chromatogram.
Therefore, the possibility that two monodisperse polymers with
equal mean hydrodynamic volumes, but dissimilar spreading coef-
ficients, may have different median values for their hydrodynamic
volume distributions and thus different modal values for their
respective chromatograms is not considered. Furthermore, the
reality of polydispersity and its potential for producing a
positional error is also ignored by this theory.

Significantly, the empirical basis for a universal calibration
has been the repeated observation (9-12) that the product of the
weight—average molecular weight and the intrinsic viscosity for a
series of polydisperse polymers will be colinear in respect to
modal elution volumes, with the same product for a second series

of polydisperse polymers of differing Mark-Houwink constants,
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()] Mu(1) = [n]y Mu(2). (17)

Equation (17), however, has been interpreted as only an approxima-
tion to reality where the weight-averages are actually very close
in value to the number-averages. But, what is important is that
each elution volume increment of a polymer solution after separa-
tion will be isolated as a polydisperse solution due to nonin-
finite resolution. Therefore, each elution volume increment will
have an intrinsic viscosity which measures a number-average hydro-
dynamic volume (13-14) and a viscosity-average molecular weight.
Because the viscosity—average molecular weight is frequently
approximated by the weight~average molecular weight, Equation (17)
actually predicts that the weight-average of each elution volume
increment for one polymer type will be proportional to the weight-

average for a second polymer type.
Ky M,7lal(l = Kp F,m1Pa2(2). (18)

In effect, a weight—average DCC equation describes the weight-—
average molecular weight that each elution volume Increment will
have for a polymer solution that has been separated with a par-
ticular dispersion coefficient of P(x). This is the reason that a
GPC chromatogram can be analyzed directly with such an equation to
yleld an accurate weight—-average for the entire polymer or polymer
solution. Thus, Equation (18) at first inspection seems capable
of interconverting one weight—-average DCC equation directly into
another. But, the specific dispersion coefficient that one
polymer type may have 1s independent of the other. Therefore,
although dispersion coefficients are not translatable, the equal-
ity of Equation (18) still remains, allowing the modal-positional
equation of polymer "1" to be described in terms of the modal-
positional equation of polymer "2" and both dispersion coef-
ficients. Thus, by substituting Equatiom (15) for both polymers
into Equation (18):

1n M(1) = & + 8 1n M(2) - 8 1n P(2) + In P(1), (19)

where a = 1n (K3/Ky) / (1 + ap),
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and B=( +az) / (1 +ay).

What is notable about Equation (19) is that when 1ln P(l) = In
P(2) = 0, the standard calibration equation transformation uti-
lized for universal calibration, known as the Coll~Prusinowski
formalism (15,16), is obtained. Thus, when a true modal-
positional calibration equation for polymer "2" is translated via
the Coll-Prusinowski formalism, both dispersion coefficients of
Equation (19) are neglected. This neglect would be incousequen-
tial if instrumental resolution of both polymers was infinite, or
if 8 In P(2) = 1In P(1). But, since the former condition is
impossible and the latter, at best, serendipitous, at least a
dispersional error will always be expected.

Analogously, the application of the Coll-Prusinowski formalism
to a positional-error equation [Equation (13)], derived from the
assignment of weight-average molecular weights to the modal posi-
tions of the calibration chromatograms, results in included errors
that also rely on fortuitous relationships between the positiomal
error and the dispersional error for minimization.

Thus, to avoid both dispersional errors and positional errors,
it would be advantageous to be able to translate a DCC equation
for polymer "2" directly into a DCC equation for polymer "1".
Applying the principle of dispersion compensation to the modal-
positional Equation (19) yields:

In My(1) = a + 6 1n M(2) - 8 1n P(2) + 2 1n P(1), (20)

and In M(1) = a + 8 1n M(2) - 8 1n P(2). (21)

The elimination of the dispersion coefficient P(l) in Equation
(21) 1s noteworthy because this parameter could not be derived
without independent dispersion measurements. When both DCC

equations for polymer "2" (Equations 15 and 16) are translated

directly by the Coll-Prusinowski formalism, the results are:

In My(l) = o + 8 1n M(2) + 8 1n P (2), (22)

and In Mj(l) = a + 8 1n M(2) - 8 In P(2). (23)
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The comparison of Equation (21) and Equation (23) demonstrates
that the number-average DCC equation is a true universal form and
can be translated into the number—average DCC equation for any
other polymer whose Mark-Houwink constants are known, through the
Coll-Prusinowski formalism. The comparison of Equation (20) and
Equation (22) demonstrates that the weight-average DCC equation
will not translate through the Coll-Prusinowski formalism. When
one such weight-average equation is translated, a dispersion error

will result between what is obtained and the true relationship.
METHODS

Waters—brand Styragel columns with the nominal exclusion
limits of 102, 103, 104, 105, and 1068 were utilized with
purified tetrahydrofuran (THF) as the elution solvent. The flow
rate was 2 mL/min. A Perkin-Elmer LC-55B spectrophotometer was
operated at 235 nm for the cellulose tricarbanilates and 225 nm
for the polystyrene calibration standards. The polystyrene stan-
dards were obtained from the manufacturers listed in Table I.
Cellulose tricarbanilates were prepared and injected into the GPC
columns according to the methods of Schroeder and Haigh (17).

All calculations were performed by computer programs obtained
from McCrackin. Two programs are available: Program Calib
calibrates GPC columns by the method described in (1), and program
GPC computes the molecular weight averages from chromatograms of

polymer samples.

RESULTS AND DISCUSSION

Direct Calibration

The chromatograms of ten polystyrene samples which were uti-
lized as calibration standards are depicted in Fig. 1. Each
chromatogram has been normalized to the same area and has been
characterized by the calculation of its statistical distribution
parameters: in particular, its mean (V), median (V), mode (G),
and the standard deviation (oy) with respect to elution volume.

These values for each chromatogram are listed in Table 1 along with
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TABLE 1

Vendor—Supplied Weight—Average Molecular Weights
and GPC Statistical Chromatographic Parameters

Sample Supplement ﬁ;[vs] v v G Oy sk
1 PCC 4.80 x 103 202 202 202 3.49 0.0
2 PCC 1.03 x 103 194 194 194 3.88 0.0
3 PCC 1.98 x 104 188 188 188 3.85 0.0
4 PCC 5.10 x 104 178 178 178 3.8L 0.0
5 DPR 1.25 x 105 170 170 170 4.85 0.0
6 PIB 2.39 x 105 164 164 164 4.95 0.0
7 WA 4.70 x 105 158 158 158 4.62 0.0
8 PCC 1.80 x 106 145 144 142 6.98 0.430
9 WA 2.70 x 106 143 141 138 9.13  0.548
10 PIB 3.56 x 106 139 138 136 8.82 0.340
PCC = Pressure Chemical Company.
DPR = Dow Physical Research Lab.
PIB = Polytechnic Institute of Brooklyn.

WA = Waters Associates.

their respective vendor-supplied, weight-average molecular

weights, ﬁ;[vs].

The modal value 6, is the parameter customarily selected for
graphical calibration of GPC instruments because it corresponds to
the easily identifiable maximum peak-height of a chromatogram.
Both V and V will be equal when the chromatograms are symmetrical,
but all three parameters will not be equal when skewing is pre-
sent. The degree of skewing for each chromatogram is measured by

sk = (V‘v) /Uv’

and, as can be seen from Table 1, chromatograms No. 1 through 7

are symmetric, since V=V-= ; and sk = 0; however, for chromato-—
grams No. 8, 9, and 10, V > Vo> Q and sk > 0. They are obviously
nongaussian. Specifically, this means that for the skewed chromato-
grams, the modal elution volume will not correspond positionally

to ﬁ(x)- Thus, a modified positional-error equation will result
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from their inclusion in a graphical calibration. The extent of
this modification can be estimated by assuming that ﬁ(x) may
possibly reside closer to either V or 6, and that the positional-
error equation determined from the symmetric chromatograms is
valid through the skewed chromatograms.

For all ten polystyrene chromatograms, three calibration
equations were derived from a linear regression of the logarithm
of the vendor-supplied weight—average molecular weight and the
elution volume parameters. The three calibration equations

obtained were:

1n M,[V] = 29.87 - 0.1064 V,
1n M,[V] = 29.42 - 0.1040 V, (24)
and 1n M,[V] = 28.67 - 0.09987 V,

but, the single calibration equation that was determined from the

symmetric chromatograms No. 1 through 7 was

In %,[V] = 29.45 - 0.1041 V.

Since Equation (25) is approximately equal to Equation (24), the
median elution volume V is assumed to be positionally correct for
M(x). Thus, the observable effect of utilizing either Vor V for
the skewed chromatograms instead of V is that linear error func—
tions are included that affect both the slope and intercept of
Equation (24).

The dispersion-compeunsated calibration equation obtained via

MeCrackin's computer program for all ten chromatograms was
1n M,[t] = 28.93 - 0.1017 v. (26)

It varies in both slope and intercept from Equation (24). If
Equation (24) were a true modal-positional calibration equation,
the expectation is that only the intercepts would differ due to
the inclusion of the constant dispersional parameter 1ln P(x) in
Equation (26); however, because of the positional error of
assigning the weight—-average molecular weight to a modal position,

the actual form of Equation (24) is given by Equation (13). But,
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by substituting Equations (6), (9), and (12) into Equation (7) and
simplifying, the standard relationship between dispersion and
distribution variances for the symmetrical chromatograms was

obtained (18):
2 2
c4(x) = cv(x) = uz(x). (27)
By further substitution of Equation (27) into Equation (13), the
positional-error equation can be compared with the DCC equation,

1

In My(x) = In Ty(x) + 3 D3(x) ooe (28)

Thus, the fact that the parameter oy actually does show a func-
tionality with elution volume in Table 1 explains why the slope

of Equation (24) was also differeat from the slope of Equation
(26). But, more importantly, Equation (28) demonstrates that any
weight—-average molecular weight calculated from a positional-error
equation will always be greater than the weight—average calculated
from a true modal-positional equation with dispersion correction
performed either independently or simultaneously, as in McCrackin's
method. This is true because no distribution variance GZ(X) can
be obtained for any polymer standards that will yield an empirical
03 equal to zero. Therefore, ﬁ;(x) is a weilght-average molecular
weight that is uncorrected for dispersion and positional errors,
and will still yield incorrect values when corrected for just peak
dispersion.

Table 2 compares the vendor-supplied weight-average molecular
weights with the weight-averages calculated for each polystyrene
chromatogram by all four calibration equations mentioned, in a
numerical approximation of Equation (2). As expected, the
dispersion—-compensated calibration equation (Equation 26)
demonstrated calculated weight~average values ﬂ;[t] with an
insignificant average deviation from the vendor-supplied values.
In contrast, all three graphical methods of calibration produced
larger average deviations. The values calculated from the median
calibration (Equation 24) E;[V] were consistently larger than the

values calculated from McCrackin's calibration ﬁ;[t], as predicted
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by Equation (28). The effect of positional discrepancy between
the modal elution volume G and the value of ﬁ(x) from the skewed
chromatograms is depicted by the E;[G] values for chromatograms
No. 8, 9, and 10. When skewing is positive (sk > 0), the modal
value reduces the effect of positional error and produces values
very close to both the dispersion—compensated and the vendor-
supplied.

The substitution of Equation (27) into Equation (l1) results in
an expression that may be used to calculate the number-average

molecular weight of each calibrating polymer's chromatogram,

(k) = My(x) exp(- Da(x) 02) / P2(x).
Knowledge of the spreading coefficient P(x), however, is required.
But, McCrackin's technique can also be used in an iterative
fashion to determine which value of P(x) will yield a number-
average DCC equation that is parallel to the previously determined
weight-average DCC equation. For various values of P(x), Table 3
demonstrates the response of the computer program in calculating
the new number-average DCC equations. Since McCrackin's technique
is not restricted to linear equations, quadratic coefficients will
occur when included—error functions are also nonlinear. As can be

seen in Table 3, the best value of P(x) which gave the lowest

TABLE 3
Number—-Average DCC Equations

P D1(2) D2(2) D3(2) RE2
0.99 29.00 -0.1022 1.185 x 1076 0.61
0.98 29.02 ~0.1021 1.154 x 10™6 0.47
0.97 29.01 -0.1018 0.0 0.42
0.96 29.03 -0.1018 4,240 x 1079 0.59
0.95 29.09 -0.1023 1.458 x 10~ 0.46

3Relative error determined by McCrackin's computer program by
comparing number-average values against inputted number-average
values.
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relative error, and a number-average DCC equation approximately
parallel to the weight-average DCC equation was P(x) = 0.97.

The substitution of Equation (27) into Equation (11) results in
an expression that may be used to calculate the number-average

molecular weight of each calibrating-polymer's chromatogram,

Mn(x) = Ty(x) exp(~ Di(x) 02) / P2(x).
Knowledge of the spreading coefficient P(x), however, is required.
But, McCrackin's technique can also be used in an iterative
fashion to determine which value of P(x) will yield a number-
average DCC equation that is parallel to the previously determined
weight-average DCC equation. For various values of P(x), Table 3
demonstrates the response of the computer program in calculating
the new number-average DCC equations. Since McCrackin's technique
is not restricted to linear equations, quadratic coefficients will
occur when included-error functions are also nonlinear. As can be
seen in Table 3, the best value of P(x) which gave the lowest
relative error, and a number-average DCC equation approximately
parallel to the weight-average DCC equation was P(x) = 0.97.

In this calculation, E@[t] values should be used for ﬁ;(x)
instead of ﬁ;[vs] because ﬁ;[t] values are needed to complement
the respective weight-averages. Therefore, the experimental
errors associated with ﬁ;[vs] values do not enter into these
calculations.

Utilizing Equation (25) to analyze the chromatogram of poly-~
styrene SRM-706 (19), M [t] = 2.80 x 107 was calculated. This
value fell between the weight-average values reported for light
scattering (2.58 x 105) and sedimentation equilibrium (2.88 x 105).

The number-average molecular weight calculated at P(x) = 0.97
gave ﬁ;[t] = 1.49 x 105, which may be compared with the membrane
osmometry number-average of 1.37 x 105. The calculated GPC poly-
dispersity (ﬁ;[t] /-ﬁh[t] = 1.88) was identical to the polydisper-
sity calculated from the ratio of the light scattering to the
membrane osmometry values; however, both the calculated weight-

average and number-average molecular weights have a relative error
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of 8% greater than the direct measurement. This error is within

acceptable limits for GPC.

Universal Calibration

With the intention of obtaining DCC equations for cellulose tri-
carbanilates (CIC), both the weight-average and the number-average
DCC equations for polystyrene were translated via the Coll-Prusin-
owski formalism. The constants o and B were calculated using the
respective Mark-Houwink constants [Ky = 1.179 x 1072 and ap = 0.74
for polystyrene, K; = 2.010 x 10~3 and ay = 0.92 for CIC (10)].

In this situation, however, it was found necessary to subtract the
Ptitsyn-Eisner correction factor (0.15) from a to account for
CTC's deviations from random coiling (lﬁ:gg)' The discrepancy that
was discovered involved the calculation of a number-average
greater than the vendor-supplied weight-average for the narrowest
sample (N-5) when the correction was not included.

The resulting calibration equations were:

In M (1) = 26.99 - 0.09217 v, (29)
and In M(1) = 27.06 -0.09226 v. (30)
As expected and demonstrated in Table 4, the weight-average values
ﬁ;[T] calculated for the CTC chromatograms via Equation (29) dif-
fered from the vendor-supplied weight-average values ﬁ;[vs]. By
virtue of the difference between Equation (20) and Equation (22),

the dispersional error would be:

P2(1) / P2B(2) = My[vs] / M,[T].
From Table 4 and with P(2) = 0.97, the dispersional coefficient was
found to have an average value of P(l) = 0.67. This smaller P(x)
value for CTC is consistent with a greater degree of dispersion due
to a greater rigidity of the polymers in solution (20). The cor-
rect DCC equation for the weight-average values was determined to
be:

1n M, (1) = 26.26 - 0.09217 v, (31)
which yielded much more reasonable values for E;[t] = ﬁ;[vs]. The
dispersion coefficient calculated from Equation (30) and Equation
(31) was P(1l) = 0.67 = exp(%-(26.26 - 27.06)).
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Table 4
Cellulose Tricarbanilate Data

Sample?d DP,[vs]P DP,,[T] p(1)¢ DP,[t] DP,[t)
N-5 550 1130 0.68 542 473
N~30 1000 2310 0.64 1110 816
N~70 1300 2480 0.70 1270 764

Average 0.67

8Samples were obtained from Hercules, Inc.
b5p = M / 519. _ L
CCalculated from P2(1) = P2B(2) DBy [vs] / DP,[T].

By simple inspection of Equation (24) in regard to Equation (26),
the application of the Coll-Prusinowski formalism to the position-
al-error equation for the polystyrenes would have resulted in
weight-average molecular weights even larger than the My[T] values.
This is a consequence of the incorporation of both dispersional
errors and positional errors. This fact can be demonstrated by
simple application of the Coll-Prusinowski formalism to Equation
(28).

1n Te(1) = o + 8 1n M(2) + 8 1n P(2) + 7 8 D3(2) o2,
which is Equation (22) with a positional-error term that will

2
always be greater than zero because 0, will never be zero.

SUMMARY

The calculation of reliably accurate molecular-weight averages
for polymer samples through gel permeation chromatography depends
on the determination of a true modal-positional calibration and an
instrumental spreading coefficient. The common graphical procedure
of agsigning a weight-average molecular weight value to a modal
position on a chromatogram will result, however, in an equation
with a positional error that will produce calculated weight-
averages that are always greater in value than the dispersionally
correct value. Because the dispersion correction will generally
not be appropriate for the positionmal error, further correction of

these values for dispersional error will not properly correct these
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values. To avoid this situation, McCrackin has developed a com-
puterized calibration technique which will calculate a dispersion-
compensated calibration equation for either weight—average or
number—average molecular weight that is dispersionally and posi-
tionally correct. Dispersion—compensated calibration equations can
be used to directly analyze a GPC chromatogram to obtain an ac-
curate value for the particular molecular weight-average that was
originally used to obtain the equation without further dispersion
correction.

The problems of positional and dispersional errors are generally
magnified when a calibration equation for one polymer type is con-
verted, by the principle of universal calibration, into the equa-
tion for another polymer type whose identical hydrodynamic volume
corresponds to a different molecular weight. Because a number-
average dispersion-compensated calibration equation is properly
balanced for the correct dispersion terms, it is a true universal
form and can be translated into the number-average dispersion-
compensated equation for another polymer type through a universal

calibration transformation.

Portions of this work were used by the author (G.J.F.R.) as par-
tial fulfillment of the requirements for the Ph.D. degree at The
Institute of Paper Chemistry.
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ay or ky

D 3(x)

G(v=v)

H(v)

M(x)

;(x)

M, (x) or My(x)

.

Mw(x) or'ﬁ;(x)
Mya (x) or Mpa(x)
ﬁ;[t] or E;[t]

My (T]

CALTIBRATION NOMENCLATURE

The Mark~-Houwink exponent or coefficient for
polymer "x" determined from the double logarith-
mic plot of intrinsic viscosity and molecular
weight.

The coefficients of a generalized GPC polynomial
calibration equation, j =1, 2, 3, etc.

The gaussian—shaped GPC chromatogram of a mono-
disperse polymer.

The GPC chromatogram for any monodisperse or
polydisperse polymer.

The molecular weight for a monodisperse polymer
of type "x."

The median value of a molecular weight distribu-—
tion for a polymer of type "x."

The weight- or number-average molecular weight
for a polydisperse polymer of type "x."

The weight- or number-average molecular weight
determined by GPC having both positional and
dispersional errors.

The weight~ or number—-average molecular weight
determined by GPC having only a dispersional
error.

The weight— or number—average molecular weight
determined from a GPC chromatogram utilizing

a dispersion—compensated calibration equation.
The weight—average molecular weight determined
from a universal calibration equation with com-—
pound positional and dispersional errors for two

different types of polymers.
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M, [V]

V]
(V]
My lvs)
P(x)

sk
ug(x)

<>

<i

<> <

W(v)

o(x)

The weight~average molecular welght determined
for a GPC chromatogram with a calibration
equatioﬂ derived from the plot of the weight-~
average molecular weight versus the mean elution
volume of a series of calibration standards.

The same as above but from a plot of‘ﬁ;[vs]

versus the median elution volume.

The same as above but from a plot of'ﬁ;[vs]

versus the modal elution volume.

The vendor-supplied weight-~average molecular
weight.

The dispersion correction factor for a polymer
of type "x."

The skewlng parameter for a GPC chromatogram.
The standard deviation of the chromatogram for
a monodisperse polymer.

The empirically measured elution volume on a GPC
chromatogram.

The elution volume corresponding to a modal
position of a monodisperse polymer chromatogram.

The mean elution volume of a GPC chromatogram.

The median elution volume of a GPC chromatogram.
The modal elution volume of a GPC chromatogram.
A polymer's molecular weight distribution, with
the molecular weight variable transformed to the
median elution volume by a median-positiomal
calibration equation.

A symbol denoting the type of polymer, e.g.,

the type of monomer it is composed of.

The intercept of the Coll-Prusinowski formalism.
The slope of the Coll-Prusinowski formalism.

The standard deviation of the molecular weight

distribution of a polymer of type "x.”
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mean

median

mode
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The standard deviation of a GPC chromatogram,
determined from (, (H(v) (v - :32) /) H(V))l/z.
Of GPC chromatogram: () (H(v) v) / } H(v¥)).
Of a lognormal molecular-weight distribution:
1n M(x) + %—D%(x) o2(x).

Of GPC chromatogram: The value of the elution
volume, v, corresponding to the vertical line
which divides a chromatogram into two parts
having equal areas.

Of a lognormal molecular-weight distribution:
The value that divides the distribution into
equal areas, symbolized as In ﬁ(x).

0f GPC Chromatogram: The value of the elution
volume at the maximum peak height.

0f a lognormal molecular-weight distribution:

1n M(x) - D%(x) o2(x).



